SIGMA
Capacity Development for Stimulating Innovation in Global Agricultural Monitoring
Erwin Goor - VITO, Belgium

Scoping Workshop
November 28-29, 2016
ANR, Paris
SIGMA PROJECT FACTS

- Funded By The European Commission
- Start 1 November 2013
- Agriculture AND Environment
- 22 partners, 17 countries
 VITO, CIRAD, IJAS, Alterra, RADJ, NMOS, DEIMOS, GeoSAS, RCMRD, Aghrymet, RCMRD, Sarvision, Sarmap, INTA, Geoville, UCL, EFTAS, FAO, ITC, GISAT, IKI, SRI
- Argentina, Ukraine, China, Russia, Burkina Faso, Ethiopia, USA, Brazil, Vietnam, Belgium, ...
- 11,2 M EUR
- A Major European contribution to GEOGLAM-> Supporting JECAM
- Coordinated by VITO, Belgium – Sven Gilliams
- http://www.geoglaml-sigma.info/
SIGMA GOAL

Improve Remote Sensing based methods and indicators to monitor and assess progress towards “sustainable agriculture”

- Inventory of Crop land distribution and its changes over time
- Characterize changes in agricultural production levels
- Assess environmental impact of agriculture over time
E-INFRASTRUCTURES & DATA MANAGEMENT

- SIGMA distribution facility
- SIGMA Analysis facility (VEGA)
- SIGMA Validation facility (GeoWiki)
- Agricultural database (STAC)
- Time Series Viewer → Leverages on Proba-V Mission Exploitation Platform

In Situ data storage – viewing - analysis
PROBA-V MISSION EXPLOITATION PLATFORM

PROBA-V-MEP.ESA.INT

Develop and run your EO applications with direct access to full EO data archive.
E-INFRASTRUCTURE AND DATA MANAGEMENT ISSUES

- In-situ database → visualisation & analysis of data
 - Prototype is available ... path towards operationalisation is unclear
 - General issue to find reliable complementary open data
 - Mindshift needed to open in-situ data (e.g. field work from multiple projects): free & open
- Mindshift needed towards ‘bring users to the data’
 - Many scattered ‘pre-operational’ approaches, but no final solution in place → EC DIAS looks promising for Copernicus data
 - Interoperability between different platforms → practically!
 - Need for easy-to-use python/R Remote Sensing APIs on time series of raster data
 - Hiding complexity of the underlying platform (e.g. Hadoop/Spark)
 - Researchers vs. ICT → how to bridge the gap?
 - Good example: Jupyter Notebooks, if supported by rich python/R library specific for the community of researchers
- It is very difficult to stimulate users to publish their output (i.e. products/services) on a platform where other users can discover it - consult its metadata - download it – use it – invoke it - ...
• Opportunities to collaborate with ‘best practices’ from different teams to (1) learn from each other and to (2) bring together its data & infrastructure for a common goal.
• Focus on bridging the gap between ‘data scientists’ and ‘ICT experts’ ➔ simple community-oriented interfaces, hiding underlying complexity of the infrastructure